ON MEASURES SIMULTANEOUSLY 2- AND 3-INVARIANT

BY

RUSSELL LYONS†

Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA

ABSTRACT

Furstenberg has conjectured that the only continuous probability measure on the circle $T = \mathbb{R}/\mathbb{Z}$ which is invariant under both $x \mapsto 2x$ and $x \mapsto 3x$ is Lebesgue measure. We shall show that under additional hypotheses, this is true. We also discuss related conjectures and theorems.

§1. Introduction

For any integer n, let $T_n: x \mapsto nx$ denote the indicated endomorphism of the circle group $T = \mathbb{R}/\mathbb{Z}$. A set $E \subset T$ is called T_n -invariant if $T_n(E) \subset E$. Furstenberg [2] showed that the only infinite closed set which is both T_2 - and T_3 -invariant is the whole circle. Indeed, more generally, call $S \subset \mathbb{Z}$ a nonlacunary semigroup if S is a multiplicative semigroup whose positive elements are not contained in any singly-generated semigroup — for example, $S = \{2^m 3^n: m, n \ge 0\}$. A set is S-invariant if it is T_n -invariant for all $n \in S$. Furstenberg showed that whenever S is a nonlacunary semigroup, the only infinite closed set which is S-invariant is the whole circle. Now two nonzero integers are called multiplicatively independent if they generate a nonlacunary semigroup, i.e., if their absolute values are not both powers of the same integer. Furstenberg has made the following conjecture, which is clearly stronger than the above theorem.

Let p and q be multiplicatively independent. If E is any infinite

(C1) closed T_p -invariant set, then $T_q^n E \to \mathbf{T}$ in the Hausdorff metric.

Received March 25, 1987

[†] Research partially supported by fellowships from the American Mathematical Society and the National Science Foundation.

Note that Furstenberg's theorem on S-invariant sets is equivalent to an assertion about measures. Indeed, recall that a Borel probability measure μ is said to be T_n -invariant if $\mu = T_n \mu$, where $(T_n \mu)(E) = \mu(T_n^{-1}E)$ for all measurable E. Thus, Furstenberg's theorem states that every continuous S-invariant measure has full support (i.e., supp $\mu = T$) if S is any nonlacunary semigroup. He has conjectured, in fact, that

The only continuous S-invariant (probability) measure is

(C2) Lebesgue measure, λ , if S is a nonlacunary semigroup.

Similarly, (C1) is equivalent to the conjecture that if μ is T_p -invariant, then supp $T_a^n \mu \to T$. Furstenberg has again made the stronger conjecture that

If p and q are multiplicatively independent and μ is any

(C3) continuous T_{v} -invariant measure, then $T_{q}^{n} \mu \rightarrow \lambda$ weak*.

We may formulate similar conjectures which do not involve invariance: Let $M_c^1(\mathbf{T})$ denote the continuous probability measures.

(C4) If $\mu \in M_c^1(\mathbf{T})$ and S is a nonlacunary semigroup, then $\exists n_k \in S \text{ tending to } \infty \text{ such that } \hat{\mu}(n_k) \to 0.$

(C5) If
$$\mu \in M_c^1(T)$$
 and S is a nonlacunary semigroup,
then $\exists n_k \in S \text{ such that } T_{n_k} \mu \xrightarrow{w^*} \lambda$.

Clearly $(C5) \Rightarrow (C4) \Rightarrow (C2)$. In fact, $(C4) \Rightarrow (C5)$ as follows. Given $\mu \in M_c^1(T)$, apply (C4) to the measure $\sum_{1 \le j \le k} T_j(\mu * \tilde{\mu})$ to obtain an $n_k \in S$ satisfying $|\hat{\mu}(jn_k)| < k^{-1}$ for $1 \le j \le k$, where $\tilde{\mu}(E) = \mu(-E)$. This sequence $\{n_k\}$ is then such that $T_{n_k}\mu \xrightarrow{\nu^*} \lambda$. Also, one is almost able to conclude that $(C2) \Rightarrow (C5)$ by considering a weak* limit point, ν , of

$$\sum_{\substack{n \in S' \\ n \le N}} T_n(\mu * \tilde{\mu}) / \sum_{\substack{n \in S' \\ n \le N}} 1,$$

where S' is any nonlacunary subsemigroup of S generated by two positive integers. Then ν is S'-invariant, but, unfortunately, not necessarily continuous.

We note, in any case, that (C4) and (C5) are true when $S = \mathbb{Z}$. Here we shall establish special cases of conjectures (C1), (C2), and (C3).

We thank Bernard Host and François Parreau for useful discussions.

§2. Exact measures

Recall that a measure μ is called *T-exact* (or *K-mixing* for *T*) if

$$\forall g \in L^{2}(\mu) \lim_{\substack{n \to \infty \\ \|f\|_{2} \le 1}} \sup_{f \in L^{2}(\mu)} |\langle T^{n}f, g \rangle - \langle f, 1 \rangle \langle 1, g \rangle| = 0,$$

where $\langle f, g \rangle$ denotes $\int f\bar{g} d\mu$. Observe that $(T_n \mu)^{\hat{}}(r) = \hat{\mu}(nr)$. Thus, if μ is T_p -exact, then

$$\forall b \in \mathbb{Z} \quad \lim_{n \to \infty} \sup_{a \in \mathbb{Z}} |\hat{\mu}(ap^n + b) - \hat{\mu}(a)\hat{\mu}(b)| = 0.$$

THEOREM 1. Let $\mu \in M_c^1(T)$ be S-invariant, where S is a nonlacunary semigroup generated by relatively prime integers p, q. If μ is T_p -exact, then $\mu = \lambda$.

We require two lemmas concerning elementary number theory.

LEMMA 2. Let p, q > 1 be relatively prime. There exist A, d, L with $L \ge 2$ and (d, p) = 1 such that

$$q^A = dp^L + 1.$$

PROOF. Choose A_1 and d_0 so that $q^{A_1} = d_0 p^2 + 1$ and write $d_0 = d_1 p^l$ with $p \mid d_1$. If $(d_1, p) = 1$, we are done. Otherwise, choose p_1 so that $d_1 p_1 = d_2' p$ with $(d_2', p) < (d_1, p)$. Put $A_2 = p_1 A_1$, so that for some d', d_2 ,

$$q^{A_2} = (d_1 p^{2+l} + 1)^{p_1} = d' p^{4+2l} + d'_2 p^{3+l} + 1$$

= $d_2 p^{3+l} + 1$.

Since $(d_2, p) = (d'_2, p) < (d_1, p)$, we can repeat this process until, after a finite number of steps, we obtain the desired equation.

LEMMA 3. Let p, q > 1 be relatively prime and let A be the smallest positive integer such that d and L exist satisfying Lemma 2. Then for all $l \ge L$, the order of q modulo p^l is $p^{l-L}A$ and $q^x \equiv b \pmod{p^l}$ has a solution in x iff $q^x \equiv b \pmod{p^L}$ does.

PROOF. Let r_l denote the order of q modulo p^l . We have, by induction on $l \ge L$, that

(1)
$$q^{p^{l-L_A}} = d_l p^l + 1, \quad (d_l, p) = 1.$$

Hence $r_l \mid p^{l-L}A$. Furthermore, if $p^{l-L}A = r_{i}s_l$, let

$$q^{r_l}=d_l'\,p^l+1.$$

Then

(2)
$$q^{r_i s_i} = d''_i p^{2l} + s_i d'_i p^l + 1.$$

Comparison with (1) shows that $(d'_l, p) = 1$. When l = L, this means that $r_L = A$ by choice of A. Thus, for l > L, we have $A = r_L \mid r_l$. But comparison of (2) and (1) also shows that $(s_l, p) = 1$, whence from $p^{l-L}A = r_l s_l$, it follows that $s_l = 1$. Thus $r_l = p^{l-L}A$ and the rest of the lemma follows easily.

When p is prime, Lemma 3 is a familiar fact in p-adic number theory.

PROOF OF THEOREM 1. We may clearly assume that p and q are positive. By Lemma 3, there exists a sequence of integers $n_i \to \infty$ $(j \ge L)$ such that

$$q^{n_j} \equiv p^j + 1 \pmod{p^{2j}}.$$

Write

$$q^{n_j} = d_i p^{2j} + p^j + 1.$$

Then for all $m \in \mathbb{Z}$,

$$\hat{\mu}(m) = \hat{\mu}(mq^{n_j}) = \hat{\mu}([md_jp^j + m]p^j + m)$$

$$= \lim_{j \to \infty} \hat{\mu}(md_jp^j + m)\hat{\mu}(m)$$

$$= \left[\lim_{j \to \infty} \hat{\mu}(md_j)\right]\hat{\mu}(m)^2.$$

Therefore, if $\hat{\mu}(m) \neq 0$, we obtain

$$1 = \hat{\mu}(m) \lim_{j \to \infty} \hat{\mu}(md_j).$$

But $|\hat{\mu}| \le 1$, whence $|\hat{\mu}(m)| = 1$. If $m \ne 0$, this implies that μ is discrete. Thus $\hat{\mu}(m) = 0$ for all $m \ne 0$ and $\mu = \lambda$.

Under similar hypotheses, we can prove a weak version of Conjecture (C3).

THEOREM 4. Let p, q > 1 be relatively prime integers and let $\mu \in M_c^1(T)$ be T_r -exact. Then there exist $n_i \to \infty$ $(j \ge L)$ such that $T_a^{n_i} \mu \xrightarrow{w^*} \lambda$.

PROOF. Choose $n_i \to \infty$ $(j \ge L)$ such that

$$q^{n_j} \equiv p^{j(j-1)} + p^{j(j-2)} + \cdots + p^j + 1 \pmod{p^{j^2}}.$$

Then with appropriate d_j , we have for all $m \in \mathbb{Z}$,

$$\lim_{j \to \infty} \hat{\mu}(mq^{n_j}) = \lim_{j \to \infty} \hat{\mu}(md_jp^{j^2} + mp^{j(j-1)} + \dots + mp^j + m)$$

$$= \hat{\mu}(m) \lim_{j \to \infty} \hat{\mu}(md_jp^{j(j-1)} + mp^{j(j-2)} + \dots + m)$$

$$= \hat{\mu}(m)^2 \lim_{j \to \infty} \hat{\mu}(md_j p^{j(j-2)} + mp^{j(j-3)} + \cdots + m)$$

$$= \cdots$$

Therefore $\lim_{j\to\infty} |\hat{\mu}(mq^{n_j})| \le |\hat{\mu}(m)|^l$ for any given l. Since $|\hat{\mu}(m)| < 1$ for $m \ne 0$, it follows that $\lim_{j\to\infty} \hat{\mu}(mq^{n_j}) = 0$ for $m \ne 0$. In other words, $T_q^n \mu \xrightarrow{w^*} \lambda$.

For many specific measures, such as infinite convolutions and Riesz products, we may obtain the full conclusion of (C3). Let e(x) denote $e^{2\pi ix}$.

THEOREM 5. Let p, q be multiplicatively independent and let $v \in M_c^1(T)$ be T_p -invariant and T_p -exact. Suppose that if $\{e(m_j x)\}_{j \ge 1}$ is any sequence not converging to zero weak* in $L^{\infty}(v)$, then there is a subsequence $\{m'_j\}$ of $\{m_j\}$ and integers b, a_j , n_j such that $n_j \to \infty$ and $m'_j = a_j p^{n_j} + b$. Then $T_q^n \mu \xrightarrow{w^*} \lambda$ for any probability measure μ absolutely continuous with respect to a measure of the form $\delta(t) * T_r v$ $(t \in T, r \in Z^*)$.

See Lyons [3] for a discussion of measures satisfying these hypotheses. As a consequence, for example, if E is any subset of the Cantor middle-thirds set having positive Cantor-Lebesgue measure, then $T_2^nE \to T$.

PROOF. Let $\{n_j\}$ be any sequence such that for every $r \in \mathbb{Z}$, $\{e(-rq^{n_j}x)\}_{j\geq 1}$ has a weak* limit in $L^{\infty}(\mu)$, call it $\hat{\sigma}_x(r)$. It was shown in Lyons [3] that $\sigma_x = \lambda$ μ -a.e. unless a subsequence $\{n_j'\}$ of $\{n_j\}$ exists with $q^{n_j'}$ of the form

$$q^{n'_j} = \sum_{k=1}^K a_k p^{\alpha_k^{(j)}},$$

where K and a_1, \ldots, a_K are fixed. But Senge and Straus [7] (see also Stewart [8]) have shown this to be impossible. Therefore $\sigma_x = \lambda$ μ -a.e. and thus $e(-rq^nx) \xrightarrow{w^*} 0$ in $L^{\infty}(\mu)$ for $r \neq 0$. Integration shows that $T_q^n\mu \xrightarrow{w^*} \lambda$.

It is interesting to note that if Conjecture (C3) is true, then we may obtain the number-theoretic fact used in the proof of Theorem 5 merely by applying Theorem 1 of Lyons [3] to the measure

$$\mu = * \left[\frac{1}{3}\delta(0) + \frac{2}{3}\delta(p^{-k}) \right].$$

This is quite surprising, in view of the fact that Senge and Straus used methods from transcendence theory.

Theorem 5 suggests an additional conjecture:

If S is a nonlacunary semigroup and $\mu \in M_c^1(T)$, then there is a sequence $\{n_k\} \subset S$ such that for all $v \in M^1(T)$ with $v \leq \mu$, $T_n v \xrightarrow{w^*} \lambda$. Equivalently, given S and μ , there is $\{n_k\} \subset S$ such that for $r \neq 0$, $e(-rn_k x) \rightarrow 0$ weak* in $L^{\infty}(\mu)$.

Again, (C6) is known when $S = \mathbb{Z}$ (Lyons [4]).

A similar possibility was mentioned to us by Benjamin Weiss:

Let p and q be multiplicatively independent positive integers. If $\mu \in M_c^1(T)$ is T_p -invariant, then μ -a.e. x is normal in base q; i.e., for $r \neq 0$,

(C7)
$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} e(-rq^{k}x) = D \qquad \mu\text{-a.e.}$$

This conjecture has been established for certain infinite convolution measures and Riesz products (Schmidt [6], Pearce and Keane [5], Brown, Moran and Pearce [1]).

REFERENCES

- 1. Gavin Brown, William Moran and Charles E. M. Pearce, Riesz products and normal numbers, J. London Math. Soc. (2) 32 (1985), 12-18.
- 2. Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 1-49.
- 3. Russell Lyons, Mixing and asymptotic distribution modulo 1, Ergodic Theory Dynamical Systems (to appear).
 - 4. Russell Lyons, The local structure of some measure-algebra homomorphisms, in preparation.
- 5. C. E. M. Pearce and M. S. Keane, *On normal numbers*, J. Austral. Math. Soc. (A) 32 (1982), 79-87.
 - 6. Wolfgang Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661-672.
- 7. H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Per. Math. Hung. 3 (1-2) (1973), 93-100.
- 8. C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63-72.